V
主页
【测度概率论】MTP lecture 8-2
发布人
Discuss the measure- and Lebesgue integration theory that is relevant in probability theory. Introduce some vital concepts in probability theory, such as conditional expectations, the Radon-Nikodym theorem, martingale convergence theorems, characteristic functions and why they are characteristic, the Brownian motion. Provide rigorous proofs for two central convergence theorems in probability: the Strong Law of Large Numbers and the Central Limit Theorem.
打开封面
下载高清视频
观看高清视频
视频下载器
【测度概率论】MTP lecture 4-1
【测度概率论】MTP lecture 14-1
【测度概率论】MTP lecture 13-1
【测度概率论】MTP lecture 12-2
【测度概率论】MTP lecture 11-2
【测度概率论】MTP lecture 4-1
lecture_1_(1_2)_category_theory_(2022) (1080p)
lecture_4_(2_2)_category_theory_(2022) (1080p)
lecture_5_(2_2)_category_theory_(2022) (1080p)
lecture_2_(1_2)_category_theory_(2022) (1080p)
lecture_6_(1_2)_category_theory_(2022) (1080p)
lecture_12_(1_2)_category_theory_(2022) (1080p)
lecture_4_(1_2)_ergodic_theory_(2022) (1080p)
【无穷范畴】1-1
MTP lecture 5 - remark - 1080p
【随机积分】11
【算子代数】4-1
lecture_14_(1_2)_ergodic_theory_(2022) (1080p)
测度积分与概率(高等概率论)第9讲:独立性,收敛与积分基础
lecture_13_(1_2)_ergodic_theory_(2022) (1080p)
lecture_3_(1_2)_ergodic_theory_(2022) (1080p)
lecture_2_(1_2)_ergodic_theory_(2022) (1080p)
lecture_5_(1_2)_ergodic_theory_(2022) (1080p)
lecture_2_(2_2)_ergodic_theory_(2022) (1080p)
Lecture_1_(2_3) Ergodic Theory (2022) - 1080p.mp4
lecture_11_(1_2)_ergodic_theory_(2022) (1080p)
【随机积分】9.1
测度与积分,第九讲(Measures and Integrals, 9th Class, 2022)
【随机积分】7.2
【随机积分】8.1
Lecture 9 (13) Dynamical Systems (2022) - 1080p.mp4
Lecture 4 Riemann surfaces (2022) - 720p.mp4
【随机积分】8.2
lecture_1_(3_4)_discrete_optimization_(fall_2020) (720p)
测度与积分,第八讲(Measures and Integrals, 8th Class, 2022)
Lecture 8 (22) Dynamical Systems (2022) - 1080p.mp4
Lecture 7 (22) Dynamical Systems (2022) - 1080p.mp4
Lecture 10 (12) Dynamical Systems (2022) - 1080p.mp4
lecture_14_riemann_surfaces_(spring_2022) (720p)
Lecture 8 Riemann Surfaces (Spring 2022) - 720p.mp4