V
主页
【测度概率论】MTP lecture 13-2
发布人
Discuss the measure- and Lebesgue integration theory that is relevant in probability theory. Introduce some vital concepts in probability theory, such as conditional expectations, the Radon-Nikodym theorem, martingale convergence theorems, characteristic functions and why they are characteristic, the Brownian motion. Provide rigorous proofs for two central convergence theorems in probability: the Strong Law of Large Numbers and the Central Limit Theorem.
打开封面
下载高清视频
观看高清视频
视频下载器
【测度概率论】MTP lecture 13-1
【测度概率论】MTP lecture 4-1
【测度概率论】MTP lecture 7-1
【测度概率论】MTP lecture 9-1
【测度概率论】MTP lecture 12-1
【测度概率论】MTP lecture 5-1
lecture_13_(1_2)_category_theory_(2022) (1080p)
lecture_13_(2_2)_category_theory_(2022) (1080p)
测度与积分,第七讲(Measures and Integrals, 7th Class, 2022)
lecture_9_(1_2)_category_theory_(2022) (1080p) (1)
lecture_8_(2_2)_category_theory_(2022) (1080p)
【随机积分】10.2(下)
Lecture 13 (12) Dynamical Systems (2022) - 1080p.mp4
lecture_1_(1_2)_category_theory_(2022) (1080p)
lecture_6_(2_2)_category_theory_(2022) (1080p)
lecture_10_(2_2)_category_theory_(2022) (1080p)
lecture_7_(2_3)_category_theory_(2022) (1080p)
lecture_2_(1_2)_category_theory_(2022) (1080p)
lecture_3_(2_2)_category_theory_(2022) (1080p)
lecture_5_(2_2)_category_theory_(2022) (1080p)
lecture_5_(1_2)_category_theory_(2022) (1080p)
lecture_14_(1_2)_ergodic_theory_(2022) (1080p)
【测度概率论】MTP lecture 7-2
【微分几何】14-1
lecture_3_(2_2)_ergodic_theory_(2022) (1080p)
【随机积分】10.1(下)10.2(上)
lecture_6_(1_2)_ergodic_theory_(2022) (1080p)
lecture_5_(1_2)_ergodic_theory_(2022) (1080p)
【微分几何】5-2
lecture_2_(2_2)_ergodic_theory_(2022) (1080p)
lecture_9_(1_2)_ergodic_theory_(2022) (1080p)
lecture_2_(1_2)_ergodic_theory_(2022) (1080p)
Lecture 5 (14) Dynamical Systems (2022) - 1080p.mp4
lecture_1_(1_2)_topos_theory_(2023) (1080p)
Lecture 3 (12) Dynamical Systems (2022) - 1080p.mp4
lecture_14_riemann_surfaces_(spring_2022) (720p)
Lecture 10 (12) Dynamical Systems (2022) - 1080p.mp4
lecture_15_(1_2)_algebraic_topology_1_(fall_2020) (1080p)
Lecture 2 Riemann surfaces (2022) - 720p.mp4
Lecture 13 (13) Functional Analysis (2019)