V
主页
京东 11.11 红包
BioML:Protein Design,Lecture 8
发布人
打开封面
下载高清视频
观看高清视频
视频下载器
【搬运】BindCraft: one-shot design of functional protein binders
BioML:RNA折叠问题
Princeton机器人Lecture10:动态约束下的规划
Optimal Control (CMU 16-745) 2024 Lecture 19:卡尔曼滤波
ICML2024 Tutorial,Machine Learning on Function spaces
[SIGCOMM2023] : Offloading
MIT机器人操作Lecture 2
ICML 2024 Tutorial,Graph Learning
编译器的黄金时代
Noam Brown,通过self-play学习合作和竞争
[RLC 2024] David Silver,Towards Superhuman Intelligence
TPU V4 and Trends in Accelerator Hardware
Stanford EE364A:Convex Optimization lecture11
Dynamics on Neural Networks
Stanford EE364A:Convex Optimization lecture 10
Stanford EE364A: Convex Optimization lecture 4
[Cuda mode] Lecture 14: Practitioners Guide to Triton
Ray Summit 2024,The State of vLLM
Slaying OOMs with PyTorch FSDP and torchao
[RLC 2024] Sergey Levine,Reinforcement Learning in the Age of Foundation Models
3DV 2024,下一代reconstruction
Stanford EE364A: Convex Optimization lecture13
[Cuda mode] Lecture 7: Advanced Quantization
Zero Bubble (Almost) Pipeline Parallelism
[a16z] Democratizing Design with Figmas Dylan Field
Stanford EE364A:Convex Optimization lecture12
Geometric Regularizations for 3D Shape Generation
机器人空间感知基础
[RLC 2024] Peter Stone,实用强化学习:30 年研究的经验教训
目标驱动AI: Towards AI systems that can learn, remember, reason, and plan
Stanford CS149 并行计算,Memory Consistency 12
AI Hardware
Optimal Control (CMU 16-745) 2024 Lecture 23: 使用变分法和物理特性作为最优控制
[RLC 2024] Andy Barto, In the Beginning ML was RL
Stanford CS25: Robotics and Imitation Learning
Stanford CS149 并行计算,Cache Coherence 11
Computer Architecture 2024,Memory Latency II 9
凸集图及在最优控制和运动规划中应用
Optimal Control (CMU 16-745) 2024 Lecture 22:自动驾驶和博弈论
Stanford CS234 Reinforcement Learning,RLHF&DPO