V
主页
京东 11.11 红包
【ETHZ 2024】代数几何:06.08 Homog. coord. rings, proj. subvarieties and zariski top.
发布人
https://www.youtube.com/playlist?app=desktop&list=PLq46Q92yretlI4c6WnjJGLyWlYYwNsCYe
打开封面
下载高清视频
观看高清视频
视频下载器
【Peter Scholze】簇的上同调
【ETHZ 2024】代数几何:02.09 Dimension theory of reducible spaces
【ETHZ 2024】代数几何:15.04 Application - The genus of a smooth projective curve
【ETHZ 2024】代数几何:01.01 Affine varieties
【Gathmann】平面代数曲线
【ETHZ 2024】代数几何:03.03 Distinguished open subsets
【ETHZ 2024】代数几何:00 Introduction
【NCTS】代数拓扑中的微分形式 12:Cohomology with Compact Vertical Support
【ETHZ 2024】代数几何:14.06 Locally free sheaves
【ETHZ 2024】代数几何:03.07 Presheaves and sheaves
【NCTS】代数拓扑中的微分形式 24:Spectral Sequence of a Double Complex
【NCTS】代数拓扑中的微分形式 3:Diffeomorphism Invariance, Exact Sequences
【ETHZ 2024】代数几何:13.08 Exact sequences of sheaves of modules
【ETHZ 2024】代数几何:15.03 A criterion for smoothness and the tangent bundle
【ETHZ 2024】代数几何:02.04 Noetherian spaces and irreducible decompositions
【ETHZ 2024】代数几何:03.06 Extending regular functions over sets of high codimension
【ETHZ 2024】代数几何:05.02 Gluing two prevarieties
【ETHZ 2024】代数几何:05.05 Products of prevarieties
【Herwig Hauser】0和正特征域上的奇点解消
【ETHZ 2024】代数几何:08.05 Grassmannians as projective varieties
【ETHZ 2024】代数几何12.05 Regular functions and the structure sheaf of affine schemes
【ETHZ 2024】代数几何:01.02 Properties of vanishing sets
【ETHZ 2024】代数几何:07.05 Closed maps
【ETHZ 2024】代数几何:15.02 The cotangent sheaf
【ETHZ 2024】代数几何:06.04 Homogeneous ideals
【Mikhail Gromov】什么是流形?
【NCTS】代数拓扑中的微分形式 29:Differential Forms in Algebraic Topology (1)
【ETHZ 2024】代数几何:14.01 The sheaf associated to a module
【ETHZ 2024】代数几何:04.06 Correspondence of affine varieties and f.g. K algebra
Daniel Brogan - "3 + 3 x 8: How many lines are on a cubic surface?"
【ETHZ 2024】代数几何:08.02 Alternating tensor products
【ETHZ 2024】代数几何:04.02 Properties of morphisms of ringed spaces
【ETHZ 2024】代数几何:07.04 The Segre embedding
【ETHZ 2024】代数几何:12.12 Scheme theoretic intersections and unions
【ETHZ 2024】代数几何:14.04 Pull back of sheaves
【ETHZ 2024】代数几何:15.01 The module of differentials
【ETHZ 2024】代数几何:14.02 Quasicoherent sheaves
【ETHZ 2024】代数几何:Epilogue - What next?
【ETHZ 2024】代数几何:05.03 Gluing finite collections of prevarieties
【ETHZ 2024】代数12.03 The Zariski topology and the scheme theoretic Nullstellensatz