V
主页
8 - 1 - Noise and Probabilistic Target (17-01)
发布人
从网上购买,客服直接发的视频文件
打开封面
下载高清视频
观看高清视频
视频下载器
13 - 3 - Deterministic Noise (14-07)
6 - 4 - A Pictorial Proof (16-01)
29 谱聚类1
32 Computational Methods2
8 - 4 - Weighted Classification (16-54)
42 Boosting2
10 核定义
13 - 4 - Dealing with Overfitting (10-49)
8 - 3 - Algorithmic Error Measure (13-46)
13 Jacobian
01 概率基础
02 随机变量1
11 - 1 - Linear Models for Binary Classification (21-35)
13 - 1 - What is Overfitting- (10-45)
16 - 2 - Sampling Bias (11-50)
12 正定核应用
27 Matr-x Completion
25 spectral clustering
1 基本概念
34 Kernel FDA
5 - 2 - Effective Number of Lines (15-26)
2 - 3 - Guarantee of PLA (12-37)
11 - 2 - Stochastic Gradient Descent (11-39)
13 核主元分析
13 - 2 - The Role of Noise and Data Size (13-36)
26 K-means algorithm
9 - 3 - Generalization Issue (20-34)
12 - 4 - Structured Hypothesis Sets (09-36)
15 主坐标分析
16 - 1 - Occam-'s Razor (10-08)
14 主元分析
15 - 2 - Validation (13-24)
6 条件期望
3 - 1 - Learning with Different Output Space (17-26)
1 - 4 - Components of Machine Learning (11-45)(1)
10 - 4 - Gradient Descent (19-18)(1)
6 - 3 - Bounding Function- Inductive Cases (14-47)
14 - 4 - General Regularizers (13-28)
40 SVM
38 Support Vector Machines1