V
主页
14 - 4 - General Regularizers (13-28)
发布人
从网上购买,客服直接发的视频文件
打开封面
下载高清视频
观看高清视频
视频下载器
13 Jacobian
5 - 1 - Recap and Preview (13-44)
28 Fisher判别分析
8 - 3 - Algorithmic Error Measure (13-46)
10 - 1 - Logistic Regression Problem (14-33)
16 - 3 - Data Snooping (12-28)
11 - 4 - Multiclass via Binary Classification (11-35)
14 - 2 - Weight Decay Regularization (24-08)
13 核主元分析
3 - 4 - Learning with Different Input Space (14-13)
4 - 2 - Probability to the Rescue (11-33)
14 - 1 - Regularized Hypothesis Set (19-16)
10 - 3 - Gradient of Logistic Regression Error (15-38)
41 Boosting1
25 spectral clustering
35 Linear classification1
4 - 1 - Learning is Impossible- (13-32)
1 - 2 - What is Machine Learning (18-28)
31 Computational Methods1
7 - 2 - VC Dimension of Perceptrons (13-27)
8 - 4 - Weighted Classification (16-54)
7 - 4 - Interpreting VC Dimension (17-13)
15 - 1 - Model Selection Problem (16-00)
11 - 2 - Stochastic Gradient Descent (11-39)
6 - 1 - Restriction of Break Point (14-18)
11 - 1 - Linear Models for Binary Classification (21-35)
40 SVM
12 - 4 - Structured Hypothesis Sets (09-36)
17 概率PCA
27 Matr-x Completion
8 - 1 - Noise and Probabilistic Target (17-01)
34 Kernel FDA
2 - 3 - Guarantee of PLA (12-37)
9 - 3 - Generalization Issue (20-34)
10 - 2 - Logistic Regression Error (15-58)
01-PCL教程-官网关于和入门指南-滤波器和特征
8 - 2 - Error Measure (15-10)
6 - 2 - Bounding Function- Basic Cases (06-56)
9 - 4 - Linear Regression for Binary Classification (11-23)
36 Linear classification2