V
主页
[CVPR 21] TimeLens: Event-based Video Frame Interpolation
发布人
State-of-the-art frame interpolation methods generate intermediate frames by inferring object motions in the image from consecutive key-frames. In the absence of additional information, first-order approximations, i.e. optical flow, must be used, but this choice restricts the types of motions that can be modeled, leading to errors in highly dynamic scenarios. Event cameras are novel sensors that address this limitation by providing auxiliary visual information in the blind-time between frames. They asynchronously measure per-pixel brightness changes and do this with high temporal resolution and low latency. Event-based frame interpolation methods typically adopt a synthesis-based approach, where predicted frame residuals are directly applied to the key-frames. However, while these approaches can capture non-linear motions they suffer from ghosting and perform poorly in low-texture regions with few events. Thus, synthesis-based and flow-based approaches are complementary. In this work, we introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both. We extensively evaluate our method on three synthetic and two real benchmarks where we show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods. Finally, we release a new large-scale dataset in highly dynamic scenarios, aimed at pushing the limits of existing methods. Reference: Stepan Tulyakov*, Daniel Gehrig*, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, Davide Scaramuzza. TimeLens: Event-based Video Frame Interpolation IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 2021
打开封面
下载高清视频
观看高清视频
视频下载器
MPC + 强化学习![ICRA 24] Actor Critic Model Predictive Control
[CVPR 23] 事件像机的数据驱动特征跟踪
[Science Robotics 21] Learning High-Speed Flight in the Wild
[CoRL 24] 事件相机 + 无人机避障 Monocular Event-Based Vision for Obstacle Avoidance
李飞飞:斯坦福计算机视觉公开课
[RSS 21] NeuroBEM: 基于神经网络的混合气动四旋翼模型
(CVPR 2024)即插即用高效上采样卷积块EUCB,涨点起飞起飞了
太厉害了!终于有人把OpenCV计算机视觉讲透彻了!草履虫都能听懂!再没人看我不更了!!!
小波变换+CNN完美融合,最新idea发了CV顶会!这思路简直绝了!
运龙的毕业答辩 - Learning Robot Control From RL to Differential Simulation
[RSS 23] HDVIO: 利用混合动力学改进定位和扰动估计
【官方随书视频】最热门OpenCV入门《OpenCV图像处理:从入门到实战》
[ECCV 24] 强化学习 + 视觉里程记!Reinforcement Learning Meets Visual Odometry
老师不教我来教!OpenCV与YOLO的结合使用:目标实时追踪 计算机博士带你做毕设!
超全超简单!一口气刷完CNN、RNN、GAN、GNN、DQN、Transformer、LSTM、DBN等八大深度学习神经网络算法!真的比刷剧还爽!
禁止低效啃书!《清华高翔博士-视觉SLAM14讲》视频教程全集,简直不要太强!
(WACV 2024)即插即用边缘引导注意力机制模块,涨点起飞起飞了
【YOLOv11】一小时速通版!知名博士逐一解读配置文件以及代码复现,环境安装+推理+自定义数据集搭建与训练,入门到精通!
完整200讲!北大博士系统讲解【OpenCV】入门到进阶,包含图像识别、图像分割、目标检测等多个核心项目实战!
深度学习环境配置一套搞定:anaconda+pytorch+pycharm+cuda全详解,带你从0配置环境到跑通代码!
液体神经网络:赶超Transformer!刷新SOTA!
小波变换无敌了!搭配时间序列轻松发A会,思路创新才是王道!
你第一篇SCI写了几个月?
我愿称之为【计算机视觉入门教程】天花板!12讲从入门到实战,全程通俗易懂,都是干货!!!(计算机视觉图像处理/人工智能)
图像分割、目标检测、特征提取、边缘检测、图像滤波、人脸识别...终于有人把OpenCV那些必备的知识点讲透彻了!从入门到图像处理实战!
辛顿现场授课:AI在生物学上的神奇应用,太超前
【PyTorch】只看不练,等于白看!!PyTorch深度学习实战案例,还不拿下!!!
scaling law变天 哈佛、斯坦福、MIT名校研究发现 训练数据越多量化损失越大
比刷剧还爽!【OpenCV+YOLO】终于有人能把OpenCV图像处理+YOLO目标检测讲的这么通俗易懂了!J建议收藏!(人工智能、深度学习、机器学习算法)
太厉害了 已跪!终于有人能把OpenCV图像处理讲的这么通俗易懂了,现在计算机视觉opencv全套分享给大家。
keras之父从谷歌离职 tensorflow彻底败给了pytorch
[CoRL 24, Oral] Learning Quadruped Locomotion Using Differentiable Simulation
上百万热度!CCF A类与SCI一区那个比较难?科研新手怎么找到创新点?研究生/CVPR/毕业论文
别一上来就学习各种函数!这才是学习OpenCV的正确方法,迪哥手把手教你快速上手OpenCV图像处理工具!(深度学习/计算机视觉)
组会救星,神经网络绘图工具来了! 组会救星,神经网络绘图工具来了!
这是我迄今为止见过将 Chat GPT 原理最好的可视化。具象化的展示了Transformer神经网络模型结构。像在四维看三维。
【全集195集】深度学习必看圣经!李沐大神《动手学深度学习》最新版全套视频教程分享,小白也能信手拈来,看完直接跑通!(深度学习/神经网络/pytorch)】
强推!OpenCV+YOLO 实时目标检测实战教程,最详细的学习路线+技能介绍,毕设成功拿下!(深度学习丨计算机视觉丨YOLO丨OpenCV | 人工智能)
【附源码】2024最新53个大模型实战项目!练完即就业Ⅰ基础到框架Ⅰ适合小白入门_LLM_RAG_Agent_ChatGPT_Prompt
15分钟教会你怎么跑通官方模型数据集,怎么替换成自己的数据集,怎么跑通自己的数据集!--人工智能/深度学习/神经网络/计算机视觉