V
主页
京东 11.11 红包
Ciprian Manolescu:拓扑量子场论TQFT&Witten-Reshetikhin-Turaev&数学规范理论&低维拓扑&纽结理论&Floer同调2
发布人
https://www.youtube.com/watch?v=K0jwTn7i2E0 美国普林斯顿高等研究院 Ciprian Manolescu——An Overview of the IAS | PCMI Graduate Lecture Series (GSS) (IAS | PCMI)——1.2 Ciprian Manolescu是一位罗马尼亚裔美国数学家,从事规范场论(gauge theory),辛几何(symplectic geometry)和低维拓扑学(low-dimensional topology)的研究。他目前是美国斯坦福大学/Stanford University的数学教授。他在数学竞赛中拥有有史以来最好的记录之一:He holds the sole distinction of writing three perfect papers at the International Mathematical Olympiad: Toronto, Canada (1995); Bombay, India (1996); Mar del Plata, Argentina (1997)。He placed in the top 5 on the William Lowell Putnam Mathematical Competition for college undergraduates in 1997, 1998, and 2000。 Ciprian Manolescu在美国哈佛大学完成了本科学习和博士学位,师从Peter B. Kronheimer。他是2002年由AMS-MAA-SIAM联合颁发的Morgan Prize的获得者。他的本科论文是关于Finite dimensional approximation in Seiberg–Witten theory,他的博士论文题目是A spectrum valued TQFT from the Seiberg–Witten equations。2013年初,他发表了一篇论文,详细介绍了对5维及以上流形的triangulation conjecture的反驳。由于这篇论文,他获得了美国数学学会颁发的E. H. Moore Research Article Prize。他是Clay Research Fellowship(2004-2008)的获得者之一。2012年,他因其在低维拓扑学方面的工作,特别是他在组合Heegaard Floer同调发展中的作用而获得欧洲数学学会的十个奖项之一。他被选为2017年美国数学学会class of Fellows的成员,“以表彰他对Floer同调和流形拓扑的贡献”。2018年,他受邀在里约热内卢举行的国际数学家大会(ICM)上发表演讲,演讲主题是《Homology cobordism and triangulations》。2020年,他获得了Simons Investigator Award。引文写道:“Ciprian Manolescu从事低维拓扑学和规范场理论的研究。他的研究重点是构建新版本的Floer同调并将其应用于拓扑学问题。与合作者一起,他证明了许多Floer-theoretic invariants在算法上是可计算的。他还开发了Seiberg-Witten Floer同调的新变体,他用它来证明高维non-triangulable流形的存在。“ Ciprian Manolescu Homepage:https://web.stanford.edu/~cm5/ ICM2018 Ciprian Manolescu——Homology cobordism and triangulations:BV1cm4y1z7Fv Ciprian Manolescu——Khovanov homology和寻找exotic 4-spheres:BV1BW4y117hy Ciprian Manolescu——四维流形中的曲面和Khovanov homology:BV1H34y1J7rM Ciprian Manolescu——A knot Floer stable homotopy type:BV11M4y127Qi Ciprian Manolescu——什么是Floer homotopy类型?:BV1x24y1j7ce Ciprian Manolescu——Khovanov Homology and Skein Lasagna Modules:BV1J24y1j7na Ciprian Manolescu——四维拓扑学的历史:BV1SV411v7xp
打开封面
下载高清视频
观看高清视频
视频下载器
Ciprian Manolescu:Khovanov Homology and Skein Lasagna Modules
Ciprian Manolescu:什么是Floer homotopy类型?
Radmila Sazdanović:Khovanov Homology and Categorifcation 01
Tomasz Mrowka:Floer homology——3.1
Radmila Sazdanović:Khovanov Homology and Categorifcation 02
Aliakbar Daemi (WUSTL):Lagrangians, SO(3)-instantons and the Atiyah-Floer猜想
Tomasz Mrowka:Floer homology——1.2
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——3.2
Jake Rasmussen:Introduction to Knot Theory——4.3
Christopher Scaduto:Equivariant singular瞬子同调, IV: Further applications
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——4.2
Aliakbar Daemi:Equivariant Singular瞬子同调, I: Applications to 4D clasp number
Tomasz Mrowka:Floer homology——4.2
Tomasz Mrowka:Floer homology——2.2
Jake Rasmussen:Introduction to Knot Theory——4.1
Jake Rasmussen:Introduction to Knot Theory——2.1
Jake Rasmussen:Introduction to Knot Theory——2.3
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——1.3
Aliakbar Daemi:Equivariant singular瞬子同调, III: Singular Froyshov不变量和Gamma不变量
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——1.2
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——3.1
Jake Rasmussen:Introduction to Knot Theory——2.2
Andriy Haydys:Introduction to Gauge Theory(数学规范理论导论)——4.1
Lisa Piccirillo:Exotic Phenomena in dimension 4
Tomasz Mrowka:Floer homology——4.3
Tomasz Mrowka:Floer homology——2.1
Kenji Fukaya(深谷贤治):开闭Gromov-Witten理论及其在辛拓扑中的应用
Ciprian Manolescu:A knot Floer stable homotopy type
Tomasz Mrowka:Floer homology——4.1
Christopher Scaduto:Equivariant singular瞬子同调, II: Intro to constructions
Tobias Ekholm:colored HOMFLY polynomial的高亏格纽结切触同调和recursion
Jake Rasmussen:Introduction to Knot Theory——3.2
Tomasz Mrowka:Floer homology——3.2
Jake Rasmussen:Introduction to Knot Theory——4.2
Kenji Fukaya(深谷贤治):divisor complement的拉格朗日Floer理论和规范理论
Jake Rasmussen:Introduction to Knot Theory——3.1
Jennifer Hom:Heegaard Floer homology——4.2
Vivek Shende:Skeins on branes
Vishnu Mangalath:Stucture of Yang-Mills equations
Vishnu Mangalath:Uhlenbeck Compactness