V
主页
京东 11.11 红包
数据描述科学遇见系列「Optimal Transport Meets Data」—高津飛鳥(Asuka Takatsu):Meet Kantorovich
发布人
https://www.youtube.com/watch?v=M-j8x6Rq_XY 高津飛鳥(Asuka Takatsu)(東京都立大学)Homepage:https://sites.google.com/site/asukatakatsu/ 高津飛鳥(Asuka Takatsu)——日本応用数理学会ベストオーサー賞論文部門(2023年)——「輸送計画,輸送写像,輸送経路―有限集合とR^2 の最適輸送理論の違い―」応用数理, 第32巻2号 (2022), 69--79.:https://doi.org/10.11540/bjsiam.32.2_69 Shin-ichi Ohta , Asuka Takatsu——《Displacement convexity of generalized relative entropies》:https://doi.org/10.1016/j.aim.2011.06.029 Shin-ichi Ohta , Asuka Takatsu——《Displacement convexity of generalized relative entropies. II》:https://dx.doi.org/10.4310/CAG.2013.v21.n4.a1 Asuka Takatsu——《Isoperimetric inequality for radial probability measures on Euclidean spaces》:https://doi.org/10.1016/j.jfa.2014.01.014 Takashi Shioya & Asuka Takatsu ——《High-dimensional metric-measure limit of Stiefel and flag manifolds》:https://doi.org/10.1007/s00209-018-2044-y Kazuhiro Ishige, Paolo Salani, and Asuka Takatsu——《To logconcavity and beyond》:https://doi.org/10.1142/S0219199719500093 Shin-ichi Ohta & Asuka Takatsu ——《Equality in the logarithmic Sobolev inequality》:https://doi.org/10.1007/s00229-019-01134-9 Kazuhiro Ishige, Paolo Salani, and Asuka Takatsu——《Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains》:https://doi.org/10.1142/S0219199721500978 We study power concavity of rotationally symmetric solutions to elliptic and parabolic boundary value problems on rotationally symmetric domains in Riemannian manifolds. Kazuhiro Ishige, Paolo Salani, and Asuka Takatsu——《New characterizations of log-concavity via Dirichlet heat flow》:https://doi.org/10.1007/s10231-021-01168-5 We study the strongest concavity property preserved by the Dirichlet heat flow, characterizing log-concavity in this connection. Kazuhiro Ishige, Paolo Salani, and Asuka Takatsu——《Hierarchy of deformations in concavity》:https://doi.org/10.1007/s41884-022-00088-4
打开封面
下载高清视频
观看高清视频
视频下载器
Regularized and Neural Approaches to Solve Optimal Transport— Marco Cuturi 2024
时至今日人类终于认识了测地线?
Marco Pozzetta:关于Ricci曲率有下界流形的等周问题(isoperimetric problem)——3
微分几何速通!拓扑空间简介
Andrea Mondino:满足Ricci曲率有下界的度量测度空间(Metric Measure Space)——2
Tobias Colding:Geometry of PDEs
微分几何速通!测地线和里奇张量
Marco Pozzetta:关于Ricci曲率有下界流形的等周问题(isoperimetric problem)——1
Karl-Theodor Sturm:Metric measure spaces and synthetic Ricci bounds(度量测度空间)
微分几何速通!协变导数算符
Marco Pozzetta:关于Ricci曲率有下界流形的等周问题(isoperimetric problem)——2
广义相对论 【双语字幕】- 广义相对论的河流模型
【SNS di Pisa】Nonlinearity, Complexity and Foundations in Mathematics—2024.9.12.
Daniele Semola:The metric measure boundary of non collapsed RCD spaces
Brad Wilson:The removable singularity theorem for harmonic maps
【Fields Institute】Tobias Holck Colding:Connections between geometry and PDEs
Max Orchard:Fibre Bundles, Principal G-Bundles
Felix Schulze:Mean curvature flow with generic initial data
MIT《广义相对论|MIT 8.962 General Relativity, Spring 2020》中英字幕(豆包翻译
Andrea Mondino:满足Ricci曲率有下界的度量测度空间(Metric Measure Space)——3
Andrea Mondino:满足Ricci曲率有下界的度量测度空间(Metric Measure Space)——1
Karl-Theodor Sturm:度量测度空间的Distribution-valued Ricci Bounds(Metric Measure Space)
【系列课程】Wangjian Jian--Ricci Flow课程39
Felix Otto:The thresholding scheme for mean curvature flow
Devesh Rajpal:Harmonic maps in higher dimensions
【SNS di Pisa】Nonlinearity, Complexity and Foundations in Mathematics—2024.9.13.
广义相对论 【双语字幕】- 广义相对论中引力的真正原因
Aaron Naber:Nonlinear Harmonic Maps and the Energy Identity
广义相对论 【双语字幕】- 微分几何中的曲线坐标导论
Christina Sormani:Intrinsic Flat and Gromov-Hausdorff Convergence——1
Vishnu Mangalath:Stucture of Yang-Mills equations
James Stanfield:Background on differential geometry——1
Justin Salez:Entropy and curvature of Markov chains on metric spaces
Sathya Rengaswami:Some Ancient Solutions to General Curvature Flows
Sam Cuthberston:Curve Shortening Flow with an Ambient Vector Field
Max Hallgren:Tensor Maximum Principle——1
Christina Sormani:Intrinsic Flat and Gromov-Hausdorff Convergence——3
Vishnu Mangalath:Uhlenbeck Compactness
Devesh Rajpal:Singular sets of energy minimizing maps
Cale Rankin:Geometry and convexity of generated Jacobian equations