V
主页
京东 11.11 红包
Albert Wood:Singularities of Lagrangian Mean Curvature Flow——1
发布人
https://www.youtube.com/watch?v=7v8aG7dFcyM Albert Wood是一名专门研究几何流的数学家。2022年,Albert Wood在Felix Schulze的指导下获得了英国伦敦大学学院(University College London)的博士学位。Albert Wood论文的主题是拉格朗日平均曲率流,侧重于流的奇异行为和边界条件。Albert Wood的研究重点是拉格朗日子流形和几何流(Lagrangian submanifolds and geometric flows)的几何学,特别是拉格朗日平均曲率流的奇点、孤子和长期行为,以及low-cohomogeneity phenomena。在接触几何之前,他的研究兴趣包括组合学和数论。 Albert Wood Homepage:http://albert-maths.co.uk/
打开封面
下载高清视频
观看高清视频
视频下载器
Tobias Colding:Geometry of PDEs
Felix Schulze:Mean curvature flow with generic initial data
Wenshuai Jiang:The Nodal set along Parabolic PDEs
Kyeongsu Choi:Noncollpased ancient mean curvature flow——2
【Fields Institute】Tobias Holck Colding:Connections between geometry and PDEs
Sam Cuthberston:Curve Shortening Flow with an Ambient Vector Field
Otis Chodosh:Generalizations of the Bernstein Problem
Vishnu Mangalath:Estimates for Mean Curvature Flow in R^3
Kyeongsu Choi:Ancient mean curvature flows and singularity analysis
Sathya Rengaswami:Some Ancient Solutions to General Curvature Flows
Vishnu Mangalath:Evolution of curvature for the Ricci Flow
Aaron Naber:Nonlinear Harmonic Maps and the Energy Identity
Vishnu Mangalath:Gradient Estimates in Mean Curvature Flow——2
Kyle Broder:Kähler-Ricci flow and the Wu-Yau theorem——1
Richard Bamler:Mean curvature flow in R^3 and the Multiplicity One Conjecture——1
【IAS】Melanie Rupflin:Singularities of Teichmüller harmonic map flow
Xintao Luo:Short Time Existence for the Ricci Flow——2
Stepan Hudecek:Uhlenbeck's theorem about the removable singularities——1
Adam Thompson:Convexity and Huisken's Convergence Theorem
Xuwen Zhang:Volume-constraint local energy-minimizing sets in a ball——4
Vishnu Mangalath:Scalar maximum principle for Ricci Flow
【CIRM】Melanie Rupflin:Singularities of Teichmüller harmonic map flow
Adam Thompson:The Second Fundamental Form at Singularities of MCF
Max Hallgren:Tensor maximum principle——2
Ben Andrews:Harmonic functions with polynomial growth——1
Stepan Hudecek:MCF for surfaces in R^3 vs hypersurfaces in higher dimensions
Kyeongsu Choi:Ancient solutions of the heat equation of semi-linear equations
Richard Schoen:Steklov特征值和自由边界极小曲面
James Stanfield:Necks in Mean Curvature Flow
Ben Andrews:Ricci flow on surfaces
Devesh Rajpal:Asymptotic Convexity in MCF——1
Ben Andrews:Ricci flow on the two-sphere——1
Gunhee Cho:Intuition on Mabuchi functional
Max Hallgren:Tensor Maximum Principle——1
Weiping Zhang:Deformed Dirac operators and scalar curvature
James Stanfield:Background on differential geometry——2
Andrea Mondino:满足Ricci曲率有下界的度量测度空间(Metric Measure Space)——2
Xuwen Zhang:Volume-constraint local energy-minimizing sets in a ball——3
Kazuhiro Kuwae: 非光滑空间的Synthetic Curvature Bounds:超越有限维
Jack Thompson:Ricci solitons