V
主页
【ESI会议04/22】David Soudry - New types of Siegel-Weil formula
发布人
This talk was part of the Workshop on "Minimal Representations and Theta Correspondence" held at the ESI April 11 to 15, 2022. I will present several conjectural identities which bear a striking similarity with the Kudla-Rallis regularized Siegel-Weil formula. The key players, in the role of theta series, are the residues of Eisenstein series on symplectic groups, induced from Speh representations on Siegel parabolic subgroups. I will focus on a special case, already highly nontrivial, of the residual Eisenstein series on Sp(4m), Theta(\tau,4m), induced from a Speh representation on GL(2m) corresponding to a cuspidal representation \tau on GL(2), with trivial central character and non-vanishing L-function at 1/2, the pole of the Eisenstein series being taken at s=m/2. I will examine a regularized "Theta lift" of Theta(\tau,4l) to Sp(4m), m bigger l-1, where the "Theta kernel" is Theta(\tau,4(m+l)), restricted to Sp(4l) x Sp(4m). The result is a residual Eisenstein series induced from the tensor product of the Speh representation of GL(2l) corresponding to \tau and Theta(\tau, 4(m-l)). For a good choice of data, this is equal to a special value of an Eisenstein series on Sp(4m) induced from the Speh representation of GL(2m) corresponding to \tau. This is an ongoing joint work with David Ginzburg.
打开封面
下载高清视频
观看高清视频
视频下载器
【ESI会议04/22】Rahul Dalal - Counting Level-1, Quaternionic Automorphic Reps on G_2
【IHES2022】Wei Zhang - High-dimensional Gross-Zagier Formula
【ESI会议04/22】Anne-Marie Aubert - Theta correspondence and wave front set
【ESI会议04/22:极小表示与theta对应】
【IHES2022】Wei Zhang - High-dimensional Gross–Zagier Formula 2/2
【ICM2022报告】Peng Shan:中心的几何实现
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 1/4
【IHES2022】 Chao Li Geometric and Arithmetic Theta Correspondences
【ICM2022报告】David Loeffler & Sarah Zerbes:欧拉系和Bloch-Kato猜想
【IHES2022】Peter Scholze - Langlands纲领与曲线上丛的模空间 2/3
【IHES2022】Jessica Fintzen - 超尖表示-构造,分类,特征 2/2
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 3 /4
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 4/4
【ICM2022报告】Ana Caraiani:Shimura簇的挠系数上同调与应用
【IHES2022】Chao Li - Geometric and Arithmetic Theta Correspondences 2/2
【IHES2022】Dipendra Prasad - 同调版本的分歧律
【ICM2022报告】Michel van den Bergh: 非交换crepant消解
【IHES2022】Yiannis Sakellaridis - 超越内窥中的局部整体问题 1/2
【ICM2022报告】Yiannis Sakellaridis- 球簇, 函子性, 量子化
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 2/4
【IHES2022】Jean-François Dat 局部L参数的模空间 1/2
Syntomic Complexes
【IHES2022】David Ben-Zvi 凝聚版本和可构造版本的局部Langlands对应 1/2
【ICM2022报告】Weinan E:机器学习的一种数学观点
Jacob Lurie_ A Riemann-Hilbert Correspondence in p-adic Geometry Part 2
【IHES2022】Jessica Fintzen 超尖表示-构造,分类,特征 1/2
【IHES2022】Wee Teck Gan - 自守形式的具体构造 (2/2)
【IHES2022】Wee Teck Gan - 自守形式的具体构造 1/2
阿廷互反律 & 球面
【IHES2022】Yiannis Sakellaridis - 超越内窥中的局部和整体问题 2/2
Flach Lecture 2 - motivic L函数特殊值 II
【ICM报告2022】Xinwen Zhu- 算术与几何Langlands
【IHES2022】Peter Scholze - Langlands纲领与曲线上丛的模空间 1/3
【ICM2022报告】Ye Tian:椭圆曲线二次扭的算术
【IHES2022】Jean-François Dat 局部L参数的模空间 2/2
On the K-theory of Z/p^n
Motives and automorphic representations - James Arthur 2023
Flach Lecture 3 - zeta函数特殊值 (三种等价表述)
Jacob Lurie A Riemann-Hilbert Correspondence in p-adic Geometry Part 1
Flach Lecture 1 - motivic L函数特殊值 I