V
主页
Jacob Lurie A Riemann-Hilbert Correspondence in p-adic Geometry Part 1
发布人
https://www.youtube.com/watch?v=xPkzcU85SLg&t=1s At the start of the 20th century, David Hilbert asked which representations can arise by studying the monodromy of Fuchsian equations. This question was the starting point for a beautiful circle of ideas relating the topology of a complex algebraic variety X to the study of algebraic differential equations. A central result is the celebrated Riemann-Hilbert correspondence of Kashiwara and Mebkhout, which supplies a fully faithful embedding from the category of perverse sheaves on X to the category of algebraic DX-modules. This embedding is transcendental in nature: that is, it depends essentially on the (archimedean) topology of the field of complex numbers. It is natural to ask if there is some counterpart of the Riemann-Hilbert correspondence over nonarchimedean fields, such as the field Qp of p-adic rational numbers. In this series of lectures, I will survey some of what is known about this question and describe some recent progress, using tools from the theory of prismatic cohomology (joint work with Bhargav Bhatt
打开封面
下载高清视频
观看高清视频
视频下载器
Jacob Lurie_ A Riemann-Hilbert Correspondence in p-adic Geometry Part 2
【ESI会议04/22】Anne-Marie Aubert - Theta correspondence and wave front set
解析几何 by Peter Scholze
【IHES2022】 Chao Li Geometric and Arithmetic Theta Correspondences
【菲尔兹奖报告】 乌克兰数学家 Maryna Viazovska 魔法函数点破极值几何之谜
【ICM2022报告】Ana Caraiani:Shimura簇的挠系数上同调与应用
【IHES2022】Yiannis Sakellaridis - 超越内窥中的局部整体问题 1/2
【IHES2022】Jessica Fintzen - 超尖表示-构造,分类,特征 2/2
On the K-theory of Z/p^n
【ICM2022报告】Michel van den Bergh: 非交换crepant消解
【IHES2022】Peter Scholze - Langlands纲领与曲线上丛的模空间 1/3
Motives and automorphic representations - James Arthur 2023
【IHES2022】Wei Zhang - High-dimensional Gross-Zagier Formula
【IHES2022】Yiannis Sakellaridis - 超越内窥中的局部和整体问题 2/2
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 1/4
乌克兰数学家Maryna Viazovska获得2022菲尔兹奖
【ESI会议04/22】David Soudry - New types of Siegel-Weil formula
【IHES2022】Peter Scholze - Langlands纲领与曲线上丛的模空间 2/3
【IHES2022】Wee Teck Gan - 自守形式的具体构造 1/2
【IHES2022】Wee Teck Gan - 自守形式的具体构造 (2/2)
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 3 /4
Flach Lecture 2 - motivic L函数特殊值 II
【IHES2022】Jessica Fintzen 超尖表示-构造,分类,特征 1/2
全80集【六年级数学】六年级系统数学思维课 数学思维训练提升(讲义+配套习题)小学3~6年级学思维提升课全面系统精讲小学数学课
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 4/4
【IHES2022】David Ben-Zvi 凝聚版本和可构造版本的局部Langlands对应 1/2
【IHES2022】Wei Zhang - High-dimensional Gross–Zagier Formula 2/2
【IHES2022】Jean-François Dat 局部L参数的模空间 2/2
【IHES2022】Jean-François Dat 局部L参数的模空间 1/2
【主线流程通关】怪兽远征 A Monster's Expedition
【ICM2022报告】Yiannis Sakellaridis- 球簇, 函子性, 量子化
新 世 纪 物 理 竞 赛
【ICM报告2022】Xinwen Zhu- 算术与几何Langlands
【IHES2022】Chao Li - Geometric and Arithmetic Theta Correspondences 2/2
【IHES2022】Dipendra Prasad - 同调版本的分歧律
【ICM2022报告】David Loeffler & Sarah Zerbes:欧拉系和Bloch-Kato猜想
Flach Lecture 3 - zeta函数特殊值 (三种等价表述)
【ESI会议04/22】Rahul Dalal - Counting Level-1, Quaternionic Automorphic Reps on G_2
Flach Lecture 1 - motivic L函数特殊值 I
【探索数论与物理的新联系】David Ben-Zvi - Langlands纲领作为电磁的对偶 2/4