V
主页
京东 11.11 红包
Michael Albanese:Complex Surfaces的Yamabe Invariant——03
发布人
https://www.youtube.com/watch?v=geMvRuj-hmw Geometry-Topology Events 6th GTSS Geometry-Topology Research Summer School. Feza Gürsey Center for Physics and Mathematics. 2-14 August 2021. Day B3. Released on 11.8.2021. Michael Albanese于2019年数学博士毕业于美国纽约州立大学石溪分校(The State University of New York at Stony Brook),导师为著名美国数学家Claude R. LeBrun。Claude R. LeBrun于1980年毕业于英国牛津大学,导师为世界著名的数学家与物理学家、2020年诺贝尔物理学奖得主Roger Penrose。Michael Albanese现任加拿大滑铁卢大学(University of Waterloo)纯数学系的博士后研究员。Michael Albanese的主要研究复几何和黎曼几何,以及代数拓扑的某些领域。Michael Albanese之前在加拿大魁北克大学蒙特利尔分校Université du Québec à Montréal (UQAM)担任CIRGET博士后研究员,期间他在加拿大麦吉尔大学(McGill University)任教。
打开封面
下载高清视频
观看高清视频
视频下载器
Michael Albanese:Complex Surfaces的Yamabe Invariant——02
Stepan Hudecek:MCF for surfaces in R^3 vs hypersurfaces in higher dimensions
Timothy Buttsworth:The Einstein-Hilbert functional along Ebin geodesics
Francesca Da Lio:Analysis of nonlocal conformal invariant variational problems—1
微分几何速通!李导数和Killing场
Aaron Naber:Nonlinear Harmonic Maps and the Energy Identity
Francesca Da Lio:Analysis of nonlocal conformal invariant variational problems—2
Richard Schoen:Steklov特征值和自由边界极小曲面
Christina Sormani:Intrinsic Flat and Gromov-Hausdorff Convergence——1
ICM2014 Ian Agol:3流形的Virtual属性
Vishnu Mangalath:Evolution of curvature for the Ricci Flow
Christina Sormani:Intrinsic Flat and Gromov-Hausdorff Convergence——2
Franc Forstnerič:极小曲面理论中新的复分析方法
Kyle Broder:Kähler-Ricci flow and the Wu-Yau theorem——1
【CRM】Simon Brendle:Singularity models in 3D Ricci flow
Jack Thompson:Ricci solitons
Devesh Rajpal:Harmonic maps in higher dimensions
Cale Rankin:Geometry and convexity of generated Jacobian equations
Misha Verbitsky:双曲几何与Morrison-Kawamata cone猜想的证明 Lecture-02
James Stanfield:Background on differential geometry——1
Max Orchard:Fibre Bundles, Principal G-Bundles
Camillo de Lellis:高余维面积极小化曲面(area-minimizing surfaces)的正则理论
Vishnu Mangalath:Uhlenbeck Compactness
Camillo De Lellis:极小曲面奇点的大小(The Size of Singularities of Minimal Surfaces)——II
Vishnu Mangalath:Gradient Estimates in Mean Curvature Flow——2
Gunhee Cho:Intuition on Mabuchi functional
Andreas Cap:Cartan Geometries——01
Kenji Fukaya(深谷贤治):Equivariant Floer同调
微分几何速通!测地线和里奇张量
James Stanfield:Hermitian manifolds with flat Gauduchon connections
Chris Hopper:Maxwell方程组、相关的Cauchy问题,与Yang-Mills方程组有关
Yevgeny Liokumovich:测量黎曼流形的大小和复杂性&极小曲面和Quantitative Topology——1
ICM2014 Thomas Schick:数量曲率的拓扑(Atiyah–Singer index theorem)(Coarse index theory)
Karl-Theodor Sturm:Metric measure spaces and synthetic Ricci bounds(度量测度空间)
Richard Schoen:The Einstein Constraint Equations(Positive Mass Theorem)
Tom Bridgeland:Geometry from Donaldson-Thomas invariants
Albert Wood:Singularities of Lagrangian Mean Curvature Flow——2
【系列课程】Wangjian Jian--Ricci Flow课程38
Brad Wilson:The removable singularity theorem for harmonic maps
Vincent Guedj:Uniform estimates through qpsh envelopes——2