V
主页
京东 11.11 红包
AlexNet paper 04
发布人
AlexNet paper 04
打开封面
下载高清视频
观看高清视频
视频下载器
AlexNet paper 03
AlexNet paper 02
CNN: 4.4 triplet loss
AlexNet paper 07
CNN: 4.4 triplet loss part 2
AlexNet paper 01
CNN: 3.8 Anchor boxes part1
VGG05
CNN: object detection (car)
why looks at case studies
VGG01
2.07 Inception network
VGG02
VGG 11
CNN: 4.2 one shot learning part1
作业解读CNN3:YOLO non-max suppression
VGG 09
VGG 07
saturating vs non-saturating non-linearities
CNN: 4.2 one shot learning part2
CNN: 3.10 R-CNN region proposal part1
CNN: 4.11 从2D到1D3D
data augmentation
CNN: 4.5 face verification and binary classification
2.05 network in network and 1x1 convolution
CNN: convolutional sliding window implementation 01
CNN: landmark detection
掰开揉碎CNN: pooling layer,strided convolution
CNN: 3.10 R-CNN region proposal part 2
CNN掰开揉碎:conv_layer, filter, feature map
吴恩达CNN1.9池化层pooling layer 笔记
2.04 Why ResNet works
classic CNN models
2.06 谷歌inception网络介绍
作业解析CNN4.1: neural style transfer 02
解读作业CNN2.2: 如何构建convolutional block
1.1 计算机视觉:问题和难点
吴恩达CNN1.4 Padding
CNN: 4.9 content loss function
(中文) 掰开揉碎:initialization, covariance shift, batch normalization