V
主页
【大模型研究】(1):从零开始部署书生·浦语2-20B大模型,使用fastchat和webui部署测试,autodl申请2张显卡,占用显存40G可以运行
发布人
【大模型研究】(1):从零开始部署书生·浦语2-20B大模型,使用fastchat和webui部署测试,autodl申请2张显卡,占用显存40G可以运行 测试网站地址: https://www.autodl.com/ 项目部署脚本地址: https://gitee.com/fly-llm/fastchat-run-llm 详细文章地址: https://blog.csdn.net/freewebsys/article/details/135735769
打开封面
下载高清视频
观看高清视频
视频下载器
喂饭教程!25分钟本地部署Qwen2大模型:配置、微调、部署+效果展示,带你训练自己的行业大模型!
20分钟学会Qwen2-7b本地部署GraphRAG,无需Ollama,从环境搭建到报错解决全流程,草履虫都能学会~
【大模型研究】(9):通义金融-14B-Chat-Int4金融大模型部署研究,在autodl上一键部署,解决启动问题,占用显存10G,有非常多的股票专业信息
使用autodl服务器,RTX 3090 * 3 显卡上运行, Yi-34B-Chat模型,显存占用60G
【B站最详细】使用Ollama+fastGpt搭建一个全能知识库!专属自己!支持多种文件类型,实现本地化大型模型部署,效果非凡!
【大模型研究】(4):在AutoDL上部署,一键部署DeepSeekCoder大模型,可以快速生成各种代码,程序员代码生成利器!效率非常高!
使用autodl服务器,两个3090显卡上运行, Yi-34B-Chat-int4模型,用vllm优化,增加 --num-gpu 2,速度23 words/s
【deepseek】(1):12月1日新大模型deepseek发布!使用3080显卡,运行7b模型,可以正常运行WebUI了,速度9 words/s。
在AutoDL上,使用4090显卡,部署ChatGLM3API服务,并微调AdvertiseGen数据集,完成微调并测试成功!
【LocalAI】(5):在autodl上使用4090Ti部署LocalAIGPU版本,成功运行qwen-1.5-14b大模型,占用显存8G
【大模型研究】(5):在AutoDL上部署,一键部署DeepSeek-MOE-16B大模型,可以使用FastChat成功部署,显存占用38G,运行效果不错。
【chatglm】(9):使用fastchat和vllm部署chatlgm3-6b模型,并简单的进行速度测试对比。vllm确实速度更快些。
使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s
【chatglm3】(7):大模型训练利器,使用LLaMa-Factory开源项目,对ChatGLM3进行训练,特别方便,支持多个模型,非常方方便
【xinference】(11):在compshare上使用4090D运行xinf和chatgpt-web,部署GLM-4-9B-Chat大模型,占用显存18G
【LocalAI】(6):在autodl上使用4090部署LocalAIGPU版本,成功运行qwen-1.5-32b大模型,占用显存18G,速度 84t/s
30分钟学会Qwen2.5-3B本地部署LightRAG,完胜GraphRAG!从模型部署到源码解读,带你全流程解析,速度快,效果好,落地部署更方便!!!
【全374集】2024最新清华内部版!终于把AI大模型(LLM)讲清楚了!全程干货讲解,通俗易懂,拿走不谢!
【大模型研究】(6):在AutoDL上部署,成功部署Mixtral-8x7B大模型,8bit量化,需要77G显存,355G硬盘
【附源码】2024最新53个大模型实战项目!练完即就业Ⅰ基础到框架Ⅰ适合小白入门_LLM_RAG_Agent_ChatGPT_Prompt
【chatglm3】(8):模型执行速度优化,在4090上使用fastllm框架,运行ChatGLM3-6B模型,速度1.1w tokens/s,真的超级快。
Qwen2.5-Coder:32B开源模型私有化部署必看教程!独家讲解Qwen模型零门槛本地部署&ollama部署流程丨手把手教你玩转开源代码模型!!
【大模型研究】(10):在autodl上部署语音模型,测试语音识别和语音合成,非常简单方便就测试成功了,机器人语音交互解方案有了
【微调实战】30分钟学会微调大模型,通义千问1.8B大模型微调从0到1,实现天气预报功能,进行结构化信息提取
【Dify知识库】(11):Dify0.4.9改造支持MySQL,成功接入yi-6b 做对话,本地使用fastchat启动,占8G显存,完成知识库配置
【大模型研究】(8):在AutoDL上部署,一键部署Qwen-1_8B-Chat-Int4量化版,需要2.5G显存,非常适合在智能机器人/边缘计算上部署
Qwen2.5-Coder接入Cursor,顶尖大模型在个人电脑帮你写代码! | 本地运行集成代码开发器LLM丨一站式搞定低代码开发全流程!
【大模型知识库】(3):本地环境运行flowise+fastchat的ChatGLM3模型,通过拖拽/配置方式实现大模型编程,可以使用completions接口
终于弄明白FastChat服务了,本地部署ChatGLM3,BEG模型,可部署聊天接口,web展示和Embedding服务!
【Dify知识库】(3):开源大模型+知识库方案,使用Dify配置智谱AI的key,可以进行聊天和知识库问答,效果更好。
【全100集】清华大佬终于把AI大模型(LLM)讲清楚了!通俗易懂,2024最新内部版!拿走不谢,学不会我退出IT圈!
三分钟一键部署Ollama!解压即用!从安装到微调,只要五步,免费开源 AI 助手 Ollama ,带你从零到精通,保姆级新手教程,100%保证成功!
目前,最满意的本地知识库 Copilot【总第 128 期】
【大模型知识库】(2):开源大模型+知识库方案,docker-compose部署本地知识库和大模型,毕昇+fastchat的ChatGLM3,BGE-zh模型
【大模型研究】(2):在AutoDL上部署,猎户星空-14B-Chat-Plugin大模型,使用脚本一键部署fastchat服务和界面,显存占用28G
(超爽中英!) 2024公认最好的【Agent智能体】系列教程!带你从0到1构建自己的智能体!
【xinference】(9):本地使用docker构建环境,一次部署embedding,rerank,qwen多个大模型,成功运行,非常推荐
【ollama】(2):在linux搭建环境,编译ollama代码,测试qwen大模型,本地运行速度飞快,本质上是对llama.cpp 项目封装
【大模型研究】(3):在AutoDL上部署,使用脚本一键部署fastchat服务和界面,部署生成姜子牙-代码生成大模型-15B,可以本地运行,提高效率
【Dify知识库】(1):本地环境运行dity+fastchat的ChatGLM3模型,可以使用chat/completions接口调用chatglm3模型