V
主页
京东 11.11 红包
Oleg Chalykh&M.Bullimore&S.Razamat:椭圆可积系统(Elliptic Integrable Systems)研讨会
发布人
https://www.youtube.com/watch?v=0lAdJij1lXQ Peter Koroteev 2022 椭圆可积系统研讨会:https://math.berkeley.edu/~pkoroteev/workshop2.html Oleg Chalykh (Leeds) Twisted Ruijsenaars models The quantum Ruijsenaars model is a q-analogue of the Calogero—Moser model, described by n commuting partial difference operators (quantum hamiltonians) h_1,..., h_n. It turns out that for each natural number m>1, there exists an integrable system whose quantum hamiltonians loosely resemble the m-th powers of h_1,..., h_n. I will discuss several ways of arriving at this generalisation. In the elliptic case, the deformation parameter (“twisting”) is an arbitrary $m$-torsion point c on the underlying elliptic curve; when c=0 one gets precisely the m-th powers of h_1,..., h_n. Matthew Bullimore (Durham) 3d Supersymmetric Gauge Theory on an Elliptic Curve There are beautiful connections between supersymmetric gauge theory in various dimensions and generalised cohomology theories. In this talk, I will discuss the ground states of 3d supersymmetric theories on an elliptic curve, focussing on the mathematical structure of the Berry connection that encodes their dependence on background flat connections for global symmetries. I will explain connections to generalised doubly periodic monopoles, equivariant elliptic cohomology and equivariant K-theory. Based on https://arxiv.org/abs/2109.10907 and work in progress with Daniel Zhang. Shlomo Razamat (Technion) Comments on Modularity of Schur Indices
打开封面
下载高清视频
观看高清视频
视频下载器
Vinicius Ramos:Integrable systems and symplectic embeddings
Eva Miranda:Geometric quantization via integrable systems——Lecture 1
Jacques Distler:N=2 SCFTs and Families of Hitchin Systems
Francesco Lin:Non-linear elliptic problems and their applications in Topology
Eva Miranda:Geometric quantization via integrable systems——Lecture 2
Ron Donagi:On Integrable Systems and 3D Mirror Symmetry(Deligne-Simpson Problem)
Jack Thompson:Ricci solitons
Eugenia Malinnikova:二阶椭圆型PDE解的定量唯一延拓(Quantitative Unique Continuation)——2.1
Richard Schoen:Steklov特征值和自由边界极小曲面
Vishnu Mangalath:Evolution of curvature for the Ricci Flow
Glen Wheeler:Ancient solutions of the heat equation with polynomial growth——3
Vishnu Mangalath:Stucture of Yang-Mills equations
Eugenia Malinnikova:二阶椭圆型PDE解的定量唯一延拓(Quantitative Unique Continuation)——1.2
Richard Schoen:特征值极值问题的几何
Vishnu Mangalath:Gradient Estimates in Mean Curvature Flow——1
Tomasz Mrowka:Floer homology——1.2
Max Orchard:Fibre Bundles, Principal G-Bundles
Kyeongsu Choi:Ancient mean curvature flows and singularity analysis
Ben Andrews:Ricci flow on surfaces
Vivek Shende:Skeins on branes
Kyeongsu Choi:Ancient solutions of the heat equation of semi-linear equations
Dusa McDuff:将椭球体嵌入Hirzebruch曲面-Symplectic embeddings of 4-dimensional ellipsoids
Eugenia Malinnikova:二阶椭圆型PDE解的定量唯一延拓(Quantitative Unique Continuation)——1.1
ICM2014 Ian Agol:3流形的Virtual属性
Vishnu Mangalath:Gradient Estimates in Mean Curvature Flow——2
Aliakbar Daemi:Equivariant Singular瞬子同调, I: Applications to 4D clasp number
Tim Buttsworth:Preserved curvature conditions for Ricci Flow——2
Ben Andrews:Harmonic functions of polynomial growth——2
Aaron Naber:Nonlinear Harmonic Maps and the Energy Identity
Igor Krichever:two-torus到spheres的共形调和映射和elliptic CM system——1
Ko Honda:The Giroux Correspondence in Arbitrary Dimensions
Yevgeny Liokumovich:测量黎曼流形的大小和复杂性&极小曲面和Quantitative Topology——1
Phillip Isett:Continuous Incompressible Euler Flows的Local Dissipation of Energy
Orli Herscovici:Gaussian B-inequality stability and equality cases
Egor V. Shelukhin:Lagrangian configurations和Hamiltonian maps
James Stanfield:Background on differential geometry——2
Camillo De Lellis:Dissipative Euler Flows 1
Jo Nelson&Morgan Weiler:ECH of prequantization bundles and lens spaces
Carlos Simpson:Moduli Spaces of Sheaves on Surfaces——Lectures 1-2
James Stanfield:Background on differential geometry——1