V
主页
京东 11.11 红包
CNN: 4.8 neural style transfer cost function part 1
发布人
视频记录本人学习吴恩达CNN课程的笔记理解
打开封面
下载高清视频
观看高清视频
视频下载器
CNN: 4.4 triplet loss
VGG 11
CNN: 4.4 triplet loss part 2
CNN: 4.10 style cost function part 1
2.05 network in network and 1x1 convolution
plt.rcParams
作业解析CNN4.1: neural style transfer 01
吴恩达CNN1.4 Padding
VGG02
掰开揉碎CNN: pooling layer,strided convolution
2.07 Inception network
CNN掰开揉碎:conv_layer, filter, feature map
VGG04
CNN: 4.9 content loss function
data augmentation
details of learning
VGG01
AlexNet paper 03
CNN: convolutional sliding window implementation 01
2.04 Why ResNet works
VGG 07
CNN: 4.2 one shot learning part2
CNN: convolutional implementation of sliding window 02
AlexNet paper 07
CNN: 3.10 R-CNN region proposal part1
AlexNet paper 02
why looks at case studies
BioBits® Protein structure and function
作业解析CNN2.2: 如何搭建identity block
吴恩达CNN1.9池化层pooling layer 笔记
作业解读CNN3:YOLO non-max suppression
2.06 谷歌inception网络介绍
AlexNet paper 01
AlexNet paper 04
2.03 残差网络 Residual network
复习CNN: filter, feature map
np.pad
CNN: 4.5 face verification and binary classification
CNN: landmark detection
1.1 计算机视觉:问题和难点