V
主页
京东 11.11 红包
1.8 简单卷积网络示例 simple CNN
发布人
视频记录本人学习吴恩达CNN课程的笔记理解 1.8 简单卷积网络示例 simple CNN
打开封面
下载高清视频
观看高清视频
视频下载器
CNN: 4.4 triplet loss
CNN: 4.4 triplet loss part 2
2.05 network in network and 1x1 convolution
2.06 谷歌inception网络介绍
CNN: object detection (car)
2.03 残差网络 Residual network
CNN: 4.11 从2D到1D3D
VGG01
2.07 Inception network
CNN: 4.2 one shot learning part2
CNN: landmark detection
掰开揉碎CNN: pooling layer,strided convolution
AlexNet paper 05
复习CNN: filter, feature map
作业解读CNN4.2: 人脸识别
VGG02
CNN: 3.10 R-CNN region proposal part1
2.04 Why ResNet works
作业解析CNN2.2: 如何搭建identity block
data augmentation
VGG 09
吴恩达CNN1.9池化层pooling layer 笔记
VGG 07
AlexNet paper 03
CNN: convolutional sliding window implementation 01
CNN: convolutional implementation of sliding window 02
AlexNet paper 04
AlexNet paper 01
why looks at case studies
CNN: 4.5 face verification and binary classification
padding input images 函数
AlexNet paper 07
VGG04
saturating vs non-saturating non-linearities
吴恩达CS229(2008)知识点分解 (更新至第6课)
classic CNN models
CNN: 3.8 Anchor boxes part1
AlexNet paper 02
吴恩达CNN 1.2 Edge Detection Example 笔记
CNN: 3.10 R-CNN region proposal part 2