V
主页
2021 DeepMind x UCL RL Lecture Series - Exploration & Control-2
发布人
https://youtu.be/aQJP3Z2Ho8U
打开封面
下载高清视频
观看高清视频
视频下载器
2021 DeepMind x UCL RL Lecture Series - Deep Reinforcement Learning-12
PyTorch论文复现 | Proximal Policy Optimization (PPO)
2021 DeepMind x UCL RL Lecture Series - Approximate Dynamic Programming-10
2021 DeepMind x UCL RL Lecture Series - Planning & models-8
2021 DeepMind x UCL RL Lecture Series - Multi-step & Off Policy-11
2021 DeepMind x UCL RL Lecture Series - Deep Reinforcement Learning-13
L1 MDPs, Exact Solution Methods, Max-ent RL (Foundations of Deep RL Series)
Pytorch复现论文MADDPG(Multi Agent Deep Deterministic Policy Gradients)
L6 Model-based RL (Foundations of Deep RL Series)
L5 DDPG and SAC (Foundations of Deep RL Series)
L4 TRPO and PPO (Foundations of Deep RL Series)
Value-Based Deep RL Requires Explicit Regularization
FinRL_ A Deep Reinforcement Learning Library for Automated Trading in Quantitati
L2 Deep Q-Learning (Foundations of Deep RL Series)
使用ROS2-Control + RL来控制四足机器人
Conservative Objective Models for Effective Offline Model-Based Optimization
DeepMind | The Role of Multi-Agent Learning in Artificial Intelligence Research
Google || Munchausen Reinforcement Learning
[3] MDPs and Dynamic Programming
ICAPS 2020: Tutorial on "Regularization in Reinforcement Learning"
Bonsai | Writing Great Reward Functions
Alexander Grishin: Controlling the overestimation bias
Deep Robust Reinforcement Learning and Regularization
Deep Reinforcement Learning and Atari 2600
NeurIPS 2019 | Reinforcement Learning: Past, Present, and Future Perspectives
ICML 2020 Causal Reinforcement Learning
(Sergey Levine)Offline Reinforcement Learning
Challenges for Deep Reinforcement Learning in Complex Environments
如何用rl_sar采集训练执行器网络的数据
John Schulman | Natural Policy Gradients, TRPO, PPO
Sergey Levine | Unsupervised Reinforcement Learning
太完整了!我居然3天时间就掌握了【机器学习+深度学习+强化学习+PyTorch】理论到实战,多亏了这个课程,绝对通俗易懂纯干货分享!
Maximum Entropy Reinforcement Learning
【Actuate 2024】中文字幕|机器人基础模型 - Robotic Foundation Models|Sergey Levine
Marc Bellemare | A Distributional Perspective on Reinforcement Learning
强推!2024年最适合初学者入门学习的《机器学习+深度学习+强化学习》上海交大和腾讯强强联合打造!太全面了!
Multi-Agent Deep Reinforcement Learning for Connected Autonomous Driving
John Schulman | Policy Gradient Methods: Tutorial and New Frontiers
【ChatGPT4.0手机版】国内无需魔法,无限次数使用教程来了!
ICML 2020 Sample Efficient Reinforcement Learning of Undercomplete POMDPs